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Abstract

We investigate the effects of non-equilibrium particle distributions resulting from rapid

deuterium-tritium burning in plasmas using a Fokker-Planck code that incorporates small-angle

Coulomb scattering, Brehmsstrahlung, Compton scattering, and thermal-nuclear burning. We find

that in inertial confinement fusion environments, deviations away from Maxwellian distributions

for either deuterium or tritium ions are small and result in 1% changes in the energy production

rates. The deuterium and tritium effective temperatures are not equal, but differ by only about

2.5% near the time of peak burn rate. Simulations with high Z (Xe) dopants show that the dopant

temperature closely tracks that of the fuel. On the other hand, fusion product ion distributions are

highly non-Maxwellian, and careful treatments of energy-exchange between these ions and other

particles is important for determining burn rates.
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I. INTRODUCTION

Non-equilibrium effects play an important role in inertial confinement fusion plasmas

[1, 2]. Timescales characterizing the themodynamic evolution of the light ion fuel are typi-

cally comparable to or shorter than those governing important equilibration processes. The

dominant effect relates to ions falling out of equilibrium with electrons, and charged particles

out of equilibrium with photons. This results in a disproportionately large fraction of the

energy in the ions, and a concomittantly larger fusion rate [2]. Recently large-scale molecular

dynamics simulations have been used by several groups to develop an improved understand-

ing of the coupling coefficients governing the energy exchange rates between electrons and

ions within plasmas [3, 4].

Here we investigate a class of more subtle non-equilibrium effects relating to equilibra-

tion within a single particle species and across heavy ion species. Though a more detailed

description is given below, the qualitative motivation is the observation that fusion preferen-

tially involves particles within the ‘Gamow Peak’ that accounts for the competition between

the rise of the cross section and decrease of the distribution function with increasing energy.

This raises the possibility that depletion of ions within this peak leads to a non-equilibrium

distribution. Though this would not have much effect on the overall energetics, it could

change burn rates. We also examine the equilibration between ion species, and in particular

investigate the role of high Z dopants.

To study details of thermalization associated with the particle distribution function, one

must go beyond the traditional Spitzer [5] model for bulk equilibration. We have developed

a numerical algorithm of the Fokker-Planck equations that includes the physical effects of

Coulomb scattering, Compton scattering, Brehmsstrahlung and inverse Brehmsstrahlung,

and thermal-nuclear burning. Here the basic assumption is that the relaxation times of

certain plasma processes are large compared to the intrinsic time scales of the problem (e.g.

scattering events). As long as relative changes in plasma quantities remain small at each

timestep (which we can control), the Fokker-Planck equations remain valid. Thus the entire

time-evolution of plasma quantities (such as ion distributions) can be ascertained.

In the following section (II) we give a cursory explanation of our Fokker-Planck code,

citing standard references for more detailed derivations. We enumerate the different types

of physics phenomena included in the code and describe the coupling of therno-nuclear fusion
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with the Fokker-Planck formalism. We also show benchmark results of our code wherein we

compare with known published results, thereby validating our numerical studies. In sect. III

we show the results of various fusion simulations. We present results for systems in which

D-T fusion is the primary reaction fuel. We compare our results to runs in which only

equilibrium distributions are used, thereby quantifying the effects of any non-equilibrium

processes. We also show how dopants, such as Xenon, quench the burn profile in our

simulations. We conclude in sect. V.

II. DESCRIPTION OF FOKKER-PLANCK CODE

In what follows we give a cursory review of the Fokker-Planck routine and the various

physics phenomena included in the algorithm. For more thorough discussions and derivations

the reader is referred to refs. [6–9] and references within.

A. Physics implemented in Fokker-Planck code

The Fokker-Planck equation describes the time evolution of a particle velocity distribution

in terms of its drift and diffusion in velocity space. This approach is valid where small

momentum transfers or small-angle collisions are the dominant transport mechanism, such

as in weakly coupled plasmas. The Fokker-Planck equation is

∂f

∂t
=

C

v2

∂

∂v
(Ff + D

∂f

∂v
) , (1)

with F the friction and D the diffusion coefficient due to all colliding species. The Fokker-

Planck collision coefficients are moments of the colliding species’ distributions, given by

Fi(v) =
m

mi

∫ v

0

du u2fi(u) , (2)

Di(v) =
1

3v

∫ v

0

du u4fi(u) +
v2

3

∫ ∞

v

du ufi(u). (3)

The coupling coefficient is given by

Ci =
4πZ2Z2

i e
4

m2
ln Λ , (4)

where the coulomb logarithm between colliding species is defined as

ln Λ =
1

2
ln

r2
ion + λ2

d

r2
closest + λ2

deBroglie

, (5)
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where rion is the charge-radius of the ion, rclosest is the radius of closest approach, λdeBroglie

is the thermal de Broglie wavelength of the colliding particles, and λd is the Debye length.

In general ln Λ takes on various forms depending on the physics approximations employed

(see [10] and references within for a discussion of the various forms of ln Λ).

Each particle species’ Fokker-Planck equation is simply the sum of collision contributions

from all species, so that the friction coefficient is CF =
∑

i CiFi and similarly for the

diffusion term. Number density is defined as N ≡ 4π
∫

dv v2 f(v).

The numerical utility of the Fokker-Planck equation becomes apparent after descretizing

eq. 1, as the first and second derivatives become implicit difference equations related to

nearest neighbor grid points. This sets up a tri-diagonal system of equations that can

be solved efficiently in linear time. We enforce particle number conservation by using the

generalized current discretization scheme given by Chang and Cooper [8]. This scheme has

the added benefit that it ensures proper equilibration of distribution functions. Energy

conservation is enforced by proper discretization of implicit collision coeficients as derived

in [11].

The radiation energy spectrum is also evolved in time through the processes of Compton

scattering/inverse Compton scattering and Bremsstrahlung/inverse Bremsstrahlung. The

photons couple to the plasma via the electrons. Since electron self-collision times are orders of

magnitude shorter than those of ion-ion and electron-ion collisions, the electron distribution

is assumed Maxwellian at all times. Thus the the electron temperature is sufficient to

compute the radiation spectrum change, and the resulting energy difference is explicitly

compensated in a re-Maxwellianized electron distribution.

Compton Scattering and inverse Compton scattering are modeled with the Kompaneets

equation [12], a Fokker-Planck equation of the radiation energy spectrum. The Kompaneets

equation is [8, 12]
∂f

∂t
=

neσ0

k2

∂

∂k
[k4(Te

∂f

∂k
+ f + f 2)] , (6)

where k ≡ hν is the photon energy and f(k, t) ≡ (hc
2
)3fp(k, t) with fp being the photon

distribution. The Kompaneets equation is solved analogously to the particle Fokker-Planck

equations, where conservation of photon number and stable approach to the equilibrium

Bose-Einstein distribution are ensured.

Bremsstrahlung and inverse Bremsstrahlung radiation are an important mechanism for

plasma cooling and are implemented in the code. Radiation absorption and emission terms
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TABLE I: Fusion reactions included in study

Fusion reactions

2H+2H → 1H+3He

2H+2H → n+3H

2H+3H → n+4He

3H+3H → n+n+4He

for a Maxwellian electron distribution are taken from [13]. The power emitted due to

electron-ion collisions per photon frequency range is given as

dW

dV dt dν
=

25πe6

3mc3
(

2π

3km
)1/2T−1/2Z2nenie

−hν
kTe ḡff , (7)

and the power absorbed by the electrons per photon frequency range is given as

dW

dV dt dν
= 4π

4e6

3mhc
(

2π

3km
)1/2T−1/2

e Z2neni(1 − e
−hν
kTe )ḡffBν(T ) . (8)

The ‘free-free’ gaunt factor is denoted ḡff . Bν(T ) typically represents the Planck function,

however here the nonequilibrium photon intensity distribution is used. These quantities

are implemented as source and implicit drain terms to be solved in the photon distribution

tridiagonal system.

B. Including thermo-nuclear fusion

The thermonuclear fusion of ions and the production of daughter nuclei has been coupled

to the Fokker-Planck code. A total of four fusion processes have been included and are

enumerated in tab. I.

The rate at which species i at a velocity v is depleted (per unit volume) due to fusion with

species j is computed as a simple integral over the colliding species’ distribution functions,

their relative velocity, and their fusion cross-section σij ,

dfi(v)

dt
= fi(v)

∫

d~vj fj(vj) |~vi − ~vj | σij(|~vi − ~vj|) . (9)

Integrating this rate over all velocities for species i gives the total fusion rate Rij per unit

volume.
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For reactions with two fusion products k and l, the non-relativistic outgoing energy

distribution for species k, normalized to unity, is given by

Sk(E) =
ni nj

Rij

√
2(mi + mj)

3/2

πkT 2√mimjmkml

∫

Erσij(Er)e
−Er/kT

√
Er + Q

(

e−αk−(E,Er) − e−αk+(E,Er)
)

, (10)

where

αk±(E, Er) =
mi + mj

mk kT

(√
E ±

√

ml

mi + mj
(Er + Q)

)2

, (11)

Q = mi + mj − mk − ml . (12)

Here Er is the relative energy of the fusing particles i and j and ni and nj are their re-

spective number densities. Equation 10 is derived from its relativistic counterpart given in

[14]. It is straightforward to convert eq. 10 into a velocity distribution to be used in our

Fokker-Planck algorithm. These annihilation and creation rates, as well as the annihilation

and creation distributions, are included as source and drain terms in the Fokker-Planck

tridiagonal system.

C. Benchmark tests

We have benchmarked our algorithm to various known physical processes. In conditions

involving only small-angle Coulomb scattering (all other physical processes ‘turned off’) and

two species i and j intially at different temperatures, the evolution of the temperatures of

these species is governed by Spitzer’s equipartition theory [5]

dTi

dt
=

Tj − Ti

τij

, (13)

where

τij =
3mimjk

3/2

8(2π)1/2nfZ2
i Z

2
j e

4 lnΛ
(
Ti

mi
+

Tj

mj
)3/2 . (14)

Our Fokker-Planck code is shown to agree well with Spitzer’s theory. Also, we have repro-

duced the results given in [7] related to deuteron-electron relaxation.

In conditions where Compton scattering is the dominant equilibration process, we have

verified that particle distributions and temperatures approach the correct equilibrium solu-

tion, i.e. ions approach Maxwellian distributions and photons approach Planckian distribu-

tions. Our comptonization rates match those obtained by other other Kompaneets solvers,

such as those given by Shirk [15].
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Finally, Bremsstrahlung and inverse Bremsstrahlung radiation have been verified against

the expected equilibrium result. Calculated photon fugacities consistently approach 1, indi-

cating equilibration of the photon field to a blackbody distribution. Total power of emitted

Bremsstrahlung radiation is [13]

dW

dtdV
=

25πe6

3hmc3
(
2πkT

3m
)1/2Z2neniḡff . (15)

Calculated emission power from our Fokker-Planck code compares well with the above an-

alytic expression.

III. RESULTS

In the runs shown below, initial conditions have equimolar concentrations of deuterium

and tritium and zero concentrations of fusion products. All ions are held at some specified

initial temperature (at time t = 0). In addition, electrons and a photon blackbody back-

ground are both included at the same initial temperature. The photon density is set by the

temperature and blackbody distribution, whereas the electron density is chosen to ensure

electrical neutrality (the deuterons and tritons are assumed fully ionized). As the plasma

undergoes burning, the number densities of fusion products grow accordingly. We do not

track any fusion neutrons.

A. Deuterium-Tritium fusion

In fig. 1 we show a typical run in which D-T is the primary fuel. Initial conditions consist

of equimolar amounts of D-T corresponding to 1000 g/cm3 held at initial temperature kT=2

keV. In fig. 2 we show the effective temperature Teff [13], expressed in units of keV, of the

photon distribution.

We can characterize the burn profile shown in fig. 1 into three main regions. There is an

initial ‘cooking’ phase where all particles have similar temperatures and little is happening.

Here the fusion rate is small and the number density of alphas grows slowly, as shown in

fig. 3. Alphas are produced with roughly 3.6 MeV of kinetic energy. They subsequently down

scatter and impart their energy onto deuterium, tritium, and electrons. The electrons then

impart their energy onto the background radiation. This initial alpha production, though
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FIG. 1: Typical burn profile for plasma with deuterium-tritium as the primary reaction fuel. Here

< E > represents the mean energy of the particle distributions, and what is plotted on the ordinate

is 2/3 this value. If the particles were in equilibrium, this would correspond to the temperature of

the particles. The deuterium, tritium, electron, and photon temperatures (not shown in this figure)

were initially held at kT = 2keV , with equimolar amounts of deuterium and tritium corresponding

to 1000 g/cm3.
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FIG. 2: Effective temperature profile of photon distribution as a function of time.
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FIG. 3: Number densities of the various particle species as a function of time.

small, heats the ions and increases the fusion rate. This positive feedback ultimately leads to

the system undergoing runaway burn, characterizing the second region of the profile. Here

the deuterium and tritium ‘light’, and their respective temperatures grow faster than the

electron and photon temperatures; the system is no longer in equilibrium with all particle

species. During this phase the energies are high enough that fusion reactions other than

D-T start to occur. Figure 4 shows the reaction rates for various fusion processes as a

function of time. The burn cannot sustain itself since the deuterium/tritium fuel depletes

and their number densities decrease to such a point that fusion rates are negligible. The

system thus ‘cools’ to equilibrium in the third region with a timescale dictated by Coulomb

energy exchange rates and Brehmsstrahlung.

Up to this point we have avoided the use of ‘temperature’ for a statistical measure of ion

properties. It is not clear that any of the particle species are in equilibrium with each other,

especially during the lighting phase. We note that if the different species are in equilibrium

(i.e. have Maxwell-Boltzmann distributions), then kT = 2 < E > /3 and the ordinates

of fig 1 can be replaced with temperature. This is always true for electrons since their

small mass gives them short equilibration times (τelectron ≪ picosecond). Therefore they

remain in equilibrium throughout the entire run. For photons, if they are in equilibrium and

thus characterized by a Planckian distribution, the effective temperature is the same as the

thermal blackbody temperature, Teff = T . As we show in the next section, the deuterium
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FIG. 4: Reaction rates for various fusion processes as a function of time.

and tritium distributions are never far from equilibrium, even during the lighting stage. This

is not the case, however, for photons and fusion products (e.g. alphas, protons, helium-3).

We will show examples of these cases later.

1. Deuterium and tritium distributions

In fig. 5 we show the energy distributions of the deuterons and tritons, normalized to

their respective number densities, at various times during the burn simulation. Note the

log-log scale of the plots. In panel (a) of fig. 5 we also show a kT=2 keV Maxwell-Boltzmann

distribution normalized to 1025 particles per cm3 for comparison. For the triton distributions

there is a clear non-equilibrium component that comes from the fusion reaction

d + d → p + t .

This reaction produces tritons with approximately 1 MeV of kinetic energy. For the deuteron

distributions it is difficult to see from fig. 5 whether any non-equilibrium contributions are

present. Both deuterium and tritium have the bulk of their distributions in equilibrium,

especially at low energies below 100 keV. In this region we fit a Maxwellian distribution using

a simple two-point formula: Given two coordinates of the distribution function, (E1,f(E1))

and (E2,f(E2)), we can extract the thermal bulk temperature kTbg and the number density
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FIG. 5: Deuteron and triton energy distributions at various times during the burn calculation.

Panel (a) shows distributions at t=20 psecs, (b) t=40 psecs, (c) t=60 psecs, and (d) t=80 psecs.

For comparison panel (a) also shows a sample Maxwellian distribution with temperature kT = 2

keV and normalized to 1025 particles per cm3.

of equilibrium particles Neq using

kTbg = (E2 − E1)ln

(

f(E1)
√

E2

f(E2)
√

E1

)

(16)

Neq =

√
π(kTbg)

3/2

2
√

E1

f(E1)e
E1/kTbg . (17)

When extracting these terms, we choose E1 and E2 well below 100 keV, typically in the

keV or less range. We note that if f(E) is exactly Maxwellian, then Eqs. 16 and 17 are

exact. That is, kTbg corresponds to the exact thermal temperature and Neq corresponds to

the exact number density. Given the total number density of a particular ion, Ntot, and

the density of particles of that same ion in equilibrium Neq, the density of non-equilibrium
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FIG. 6: Percentage of deterium/tritium not in equilibrium as a function of time.

particles is given by the difference of these quantities. We show in fig. 6 the percentage of

particles not in equilibrium calculated in this fashion as a function of time for deuterium

and tritium. The percentages are largest during and after the lighting stage, growing no

larger than 5.5%.

Another figure of merit that details the extent in which any particle distribution f(E)

(other than photon) deviates from a Maxwellian distribution is the excess kurtosis,

Kex =
1

Ntot

∫

dEE2f(E)
(

1
Ntot

∫

dEEf(E)
)2 − 3 , (18)

where Ntot =
∫

dEf(E). For a Maxwellian distribution, Kex = 0. A positive excess indicates

a distribution that is more weighted in the tail, whereas a negative excess indicates a distri-

bution weighted more at low energies. In fig. 7 we show the excess kurtosis of the deuterium

and tritium ion distributions for the run described earlier. Initially, during the ‘cooking’

phase, the excess kurtosis is zero and the deuteron/triton distributions are Maxwellian. As

the plasma ignites the kurtosis goes negative, indicating that the low-energy region of the

distributions is enhanced relative to the high-energy region. This is to be expected since

fusion predominantly occurs in the high-energy region about the Gamow peak, thereby

decreasing the distributions in this region. During the cooling stage the excess becomes

positive. Here fusion has basically ceased and the remaining high-energy fusion products
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FIG. 7: Excess kurtosis of deuterium and triton distributions as defined in eq. 18.

impart their energy onto deuterium and tritium (and electrons), enhancing the tail end of

their distributions.

Figures 5-7 indicate deviations from equilibrium for the fusion ions. Do these non-

equilibrium distributions drive large effects in our burn evolution? To answer this question,

we repeat our simulation but with a constraint that (only) the deuterons and tritons remain

in equilibrium after every timestep. We enforce this constraint by assigning Maxwellian

distributions to these ions with temperatures derived from the Fokker-Planck mean ener-

gies, < E >= 3
2
kT . Figure 8 shows the comparison of deuteron and triton mean energies

calculated in this manner with mean energies calculated in the original Fokker-Planck sim-

ulation, showing little difference. Figure 9 shows the percent difference between deuterium-

triton fusion rates calculated using the Fokker-Planck simulation and one calculated with

Maxwell-Boltzmann enforcement. Largest differences occur again around peak burn, but

are limited to at most 1.3%. These results indicate that effects due to any non-equilibrium

distributions of the deuterons and tritons play a small role in the evolution of the burning

plasma[16].

At peak burn the temperatures of the triton and deuteron begin to differ, as shown in

fig. 10. Tritons obtain a larger peak temperature due to more favorable energy exchange rates

with the alphas (there is a smaller mass difference between tritons and alphas as opposed to

deuterons and alphas). This suggests the tritons and deuterons are not in equilibrium with
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2. Fusion product distributions

Figure 11 shows the fusion products’ energy distributions (alpha, proton, and Helium-3),

normalized to their respective number densities, at various times during the burn simu-

lation. As was the case with the tritium distribution shown in fig. 5, there are obvious

non-equilibrium components to the high-energy regions of the distributions, whereas the

low-energy regions are clearly Maxwellian. We again use Eqs. 16 and 17 to extract a bulk

thermal background temperature Tbg and the number density of particles in equilibrium

Neq, respectively. In fig. 12 we plot the background temperatures of the fusion products,

as well as the temperatures of the deuterium and tritim ions for comparison. Note that

the temperatures are nearly equal to each other, the largest difference occuring during peak

burn. We show in fig. 13(a) the percentage of fusion particles not in equilibrium (compare

to fig. 6). The percentages are much larger then their deuterium/tritium counterparts, par-

ticularly during the lighting stage. Figure. 13(b) shows the excess kurtosis as a function of

time (compare to fig. 7). Again these results are much larger than their deuterium/tritium

counterparts.
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FIG. 11: Fusion products’ energy distributions at various times. Panel (a) shows distributions at

t=20 psecs, (b) t=40 psecs, (c) t=60 psecs, and (d) t=80.0 psecs.

3. Photon distributions

In fig. 14 we show results comparing full Fokker-Planck runs (solid red) to runs where the

photon distribution is enforced to be Planckian after every timestep (dashed green). Initial

conditions are the same as the previous examples. In panel (c) of this figure we have used a

temperature label for the ordinate since in previous sections we have shown that deuterons

are essentially in equilibrium throughout our simulations.

As opposed to previous deuterium/tritium results, enforcing Planckian photon distribu-

tions can dramatically quench fusion burning and alter the evolution of our burn simulations.

Figure 14(d) shows the reasoning behind this. During the lighting phase, the photon number

density coming from a blackbody distribution grows more quickly than its non-Plancking

counterpart. With more photons available to absorb energy coming from fusion, the lighting
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FIG. 12: Background temperatures derived from fitting Maxwell-Boltzmann distributions to low-

energy distributions shown in fig. 11. Also shown are deuteron and triton temperatures for com-

parision.
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FIG. 13: Percentage of fusion products not in equilibrium (a) and excess kurtosis of fusion products

(b) as a function of time.

phase becomes quenched. In essence, the ‘specific heat’ of the photon bath is increased.
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FIG. 14: Results comparing full Fokker-Planck runs (red) and Fokker-Planck runs with Planckian

photon distributions enforced after every timestep (green). Panel (a) shows difference between

photon effective temperatures, (b) shows difference in electron temperatures, (c) shows difference

in deuteron temperatures, and (d) shows difference in photon number densities.

4. Other initial conditions

In fig. 15 we show the electron and ion mean energies of other simulations using different

initial conditions, as labeled in the figures. It is clear from these runs that for a given initial

density of deuterium and tritium, the largest effect due to different initial temperatures is

to delay or advance the onset of runaway burn. Otherwise, the burn profile remains the

same. Increasing the initial densities, while keeping the same initial temperatures, advances

the ‘lighting’ stage and augments the peak ion energies. As a rough rule of thumb, we have

found that increasing the initial density by an order of magnitude reduces the time for the

onset of runaway burn by an order of magnitude.
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FIG. 15: Burn profiles for runs with different initial conditions. Panels (a), (b), and (c) had 10 gm/cm3 initial concentrations of DT fuel,

whereas (d), (e), and (f) had 100 gm/cm3. Panels (a) and (d) had all species initially held at kT = 2 keV, (b) and (e) held at kT = 3 keV,

and (c) and (f) held at kT = 4 keV.
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We have performed detailed analysis of these runs similar to those described in the above

sections. Our conclusions remain the same. Namely, non-thermal components of triton and

deuteron distributions have little, if any, effects in the evolution of burning plasmas, whereas

non-Planckian photon distributions play a large role in the evolution of burning plasmas.

IV. AFFECT OF XENON DOPANT

In fig. 16 we show how the burn evolution is altered when the presence of a high-Z dopant

(in this case Xenon) is included in the gas. Initial conditions have all particles at kT=2 keV

and concentration of D-T fuel at 10 g/cm3. Scenario A has no Xenon dopant, B has Xenon

dopant at 10−4 the amount of initial deuterium, C has Xenon dopant at 10−3 the amount of

initial deuterium, and D is 10−2 the amount of initial deuterium. The Xenon dopant remains

in equilibrium with the deuterons (and tritons) throughout the burn process, as is evident

by the equal temperatures seen in fig. 16(b) and (d). Clearly the effects of high-Z dopants

tends to quench and delay the burn, as more fusion energy is absorbed by the dopants and

less energy is available to drive the fusion reactants.

We note that in these calculations we treat the Xenons as fully ionized, and thus only ‘free-

free’ Compton scattering processes occur. This is not an accurate description of the entire

physical processes, since the Xenons will not be entirely ionized; rather, their ionization will

be a function of temperature. However, our results should still be qualitatively correct.

V. CONCLUSION

To answer the question of whether fusing plasmas can produce non-equilibrium distribu-

tions, we have developed a Fokker-Planck algorithm that incorporates thermo-nuclear fusion.

Our findings suggest that deuterium and tritium ions remain very close to equilibrium with

each other even during runaway burn. This is not the case for fusion products. They retain a

significant non-thermal part to their distributions. The distribution of these fusion products

can be split into a thermal ‘bulk’ part, described by a bulk temperature, and a remaining

non-thermal part. We find that the ‘bulk’ ions essentially remain in equilibrium with the

reacting ions.

The radiation field does not retain its Planckian distribution during runway burn and rep-
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FIG. 16: Effect of Xenon dopant on electron,deuteron, photon, and Xenon temperatures. Line A

has no dopant, B has dopant at 10−4 the amount of initial deuterium, C 10−3, and D 10−2.

resents the largest non-equilibrium component of the burning plasma. Enforcing Planckian

distributions on the radiation after every timestep also drastically alters the burn evolution

by effectively quenching the burn and delaying the lighting stage.

We have also simulated the effects of dopants, or high-Z material, on the evolution of

the burning plasma by placing fractional amounts in the plasma. As expected, the dopants

delay the onset of runaway burn, as well as quenches the burn. The dopants remain in

equilibrium with the reacting ions, however.

Our results show that the depletion of the deuteron and triton distributions around the

Gamow peak due to fusion alone is not sufficient to drive non-equilibrium physics for the

reacting ions. Because our investigations were taylored to ICF environments where neutron

areal densities are large compared to areal densities of ICF targets, our initial studies did
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not track the fusion neutrons and, in particular, did not account for any energy depostion

due to plasma interactions with these neutrons. Further, we did not account for large-angle

Coulomb scattering or elastic reaction-in-flight processes with ions produced through fusion.

These processes could, in principle, induce non-thermal effects. We plan to include these

physical processes into our Fokker-Planck algorithm for future studies.
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